White Paper

Digital Manufacturing Of Biologics

Source: GE Healthcare Life Sciences
Scientist Data

The digital revolution in manufacturing began with an explosion in monitoring, analytics, and new computing capabilities. Combined with advances such as artificial intelligence (AI), automation, and robotics, digital is changing manufacturing concepts such as product development, factory operations, and materials supply. This evolution also connects product and process designers and leaders in manufacturing engineering. Digital manufacturing is a reality that will change industry (1, 2).

For many years, manufacturing plants have been generating more and better data. Some companies have started harnessing this information to gain valuable insights that could improve efficiency, productivity, and growth (3). Recent advances in asset performance management owe much to the digital manufacturing revolution (4).

The general public sees this type of development embodied in the self-driving car. Most people understand that these cars do more than generate large amounts of data regarding their surroundings. That information is managed by advanced control systems that can interpret it to distinguish things on the road and set a path forward. Such cars are moving beyond highly automated to becoming autonomous.

Digital manufacturing can improve the productivity and robustness of existing processes and facilities. It also allows efficient development of some previously unmanageable products or processes. Digital manufacturing is a local and online means for continuous optimization of process performance. This functionality is based on information derived from both current operations and previous batches or periods of operation. It relies on the comprehensive, real-time interfacing of both human- and machine-sourced information through one centralized system.